5 resultados para drug efficacy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In quest’ultimi decenni si è assistito ad un notevole miglioramento nella terapia delle Leucemie Acute (LA) pediatriche, nonostante tutto si assiste oggi ad una fase di plateau della curva di sopravvivenza e le leucemie continuano a costituire la principale causa di morte pediatrica per malattia. Ulteriori progressi nel trattamento delle LA potrebbero essere ottenuti mediante studi di farmacogenomica che, identificando le componenti genetiche associate alla risposta individuale ai trattamenti farmacologici, consentono il disegno di terapie personalizzate e tumore-specifiche, ad alta efficacia e bassa tossicità per ciascun paziente. Il lavoro svolto è stato, dunque, finalizzato allo studio della farmacogenomica del farmaco antitumorale Clofarabina (CLO) nel trattamento delle LA pediatriche al fine di identificare marcatori genetici predittivi di risposta delle cellule leucemiche al farmaco, delucidare i meccanismi di resistenza cellulare ed individuare nuovi bersagli verso cui indirizzare terapie più mirate ed efficaci. L’analisi in vitro della sensibilità alla CLO di blasti provenienti da pazienti pediatrici affetti da Leucemia Acuta Linfoblastica (LAL) e Mieloide (LAM) ha consentito l’identificazione di due sottopopolazioni di cellule LAL ad immunofenotipo T a diversa sensibilità alla CLO. Mediante DNA-microarrays, si è identificata la “signature” genetica specificamente associata alla diversa risposta delle cellule LAL-T al farmaco. Successivamente, la caratterizzazione funzionale dei geni differenziali e l’analisi dei pathways hanno consentito l’identificazione specifica di potenziali biomarcatori di risposta terapeutica aprendo nuove prospettive per la comprensione dei meccanismi di resistenza cellulare alla CLO e suggerendo un nuovo bersaglio terapeutico per le forme LAL-T a bassa sensibilità al farmaco. In conclusione, nel lavoro svolto si sono identificati set di geni e pathways di rilievo biologico per la risposta delle cellule LAL-T alla CLO suggerendo marcatori genetici in grado di identificare i soggetti eleggibili per il trattamento o verso cui disegnare terapie innovative. Il lavoro è paradigma per l’applicazione della farmacogenomica in altre neoplasie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the previous 10 years, global R&D expenditure in the pharmaceuticals and biotechnology sector has steadily increased, without a corresponding increase in output of new medicines. To address this situation, the biopharmaceutical industry's greatest need is to predict the failures at the earliest possible stage of the drug development process. A major key to reducing failures in drug screenings is the development and use of preclinical models that are more predictive of efficacy and safety in clinical trials. Further, relevant animal models are needed to allow a wider testing of novel hypotheses. Key to this is the developing, refining, and validating of complex animal models that directly link therapeutic targets to the phenotype of disease, allowing earlier prediction of human response to medicines and identification of safety biomarkers. Morehover, well-designed animal studies are essential to bridge the gap between test in cell cultures and people. Zebrafish is emerging, complementary to other models, as a powerful system for cancer studies and drugs discovery. We aim to investigate this research area designing a new preclinical cancer model based on the in vivo imaging of zebrafish embryogenesis. Technological advances in imaging have made it feasible to acquire nondestructive in vivo images of fluorescently labeled structures, such as cell nuclei and membranes, throughout early Zebrafishsh embryogenesis. This In vivo image-based investigation provides measurements for a large number of features at cellular level and events including nuclei movements, cells counting, and mitosis detection, thereby enabling the estimation of more significant parameters such as proliferation rate, highly relevant for investigating anticancer drug effects. In this work, we designed a standardized procedure for accessing drug activity at the cellular level in live zebrafish embryos. The procedure includes methodologies and tools that combine imaging and fully automated measurements of embryonic cell proliferation rate. We achieved proliferation rate estimation through the automatic classification and density measurement of epithelial enveloping layer and deep layer cells. Automatic embryonic cells classification provides the bases to measure the variability of relevant parameters, such as cell density, in different classes of cells and is finalized to the estimation of efficacy and selectivity of anticancer drugs. Through these methodologies we were able to evaluate and to measure in vivo the therapeutic potential and overall toxicity of Dbait and Irinotecan anticancer molecules. Results achieved on these anticancer molecules are presented and discussed; furthermore, extensive accuracy measurements are provided to investigate the robustness of the proposed procedure. Altogether, these observations indicate that zebrafish embryo can be a useful and cost-effective alternative to some mammalian models for the preclinical test of anticancer drugs and it might also provides, in the near future, opportunities to accelerate the process of drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal Hedgehog signaling is associated with human malignancies. Smo, a key player of that signaling, is the most suitable target to inhibit this pathway. To this aim several molecules, antagonists of Smo, have been synthesized, and some of them have started the phase I in clinical trials. Our hospital participated to one of these studies which investigated the oral administration of a new selective inhibitor of Smo (SMOi). To evaluate ex vivo SMOi efficacy and to identify new potential clinical biomarkers of responsiveness, we separated bone marrow CD34+ cells from 5 acute myeloid leukemia (AML), 1 myelofibrosis (MF), 2 blastic phases chronic myeloid leukemia (CML) patients treated with SMOi by immunomagnetic separation, and we analysed their gene expression profile using Affimetrix HG-U133 Plus 2.0 platform. This analysis, showed differential expression after 28 days start of therapy (p-value ≤ 0.05) of 1,197 genes in CML patients and 589 genes in AML patients. This differential expression is related to Hedgehog pathway with a p-value = 0.003 in CML patients and with a p-value = 0.0002 in AML patients, suggesting that SMOi targets specifically this pathway. Among the genes differentially expressed we observed strong up-regulation of Gas1 and Kif27 genes, which may work as biomarkers of responsiveness of SMOi treatment in CML CD34+ cells whereas Hedgehog target genes (such as Smo, Gli1, Gli2, Gli3), Bcl2 and Abca2 were down-regulated, in both AML and CML CD34+ cells. It has been reported that Bcl-2 expression could be correlated with cancer therapy resistance and that Hedgehog signaling modulate ATP-binding (ABC) cassette transporters, whose expression has been correlated with chemoresistance. Moreover we confirmed that in vitro SMOi treatment targets Hedgehog pathway, down-regulate ABC transporters, Abcg2 and Abcb1 genes, and in combination with tyrosine kinase inhibitors (TKIs) could revert the chemoresistance mechanism in K562 TKIs-resistant cell line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.